4727 Further Pure Mathematics 3

1 (a) (i) e.g. $ap \neq pa \Rightarrow$ not commutative	B1 1	For correct reason and conclusion
(ii) 3	B1 1	For correct number
(iii) <i>e</i> , <i>a</i> , <i>b</i>	B1 1	For correct elements
(b) c^3 has order 2	B1	For correct order
c^4 has order 3	B1	For correct order
c^5 has order 6	B1 3	For correct order
	6	
$2 m^2 - 8m + 16 = 0$	M1	For stating and attempting to solve auxiliary eqn
$\Rightarrow m = 4$	A1	For correct solution
\Rightarrow CF $(y =) (A + Bx)e^{4x}$	A1√	For CF of correct form. f.t. from m
For PI try $y = px + q$	M1	For using linear expression for PI
$\Rightarrow -8p + 16(px + q) = 4x$		
$\Rightarrow p = \frac{1}{4} q = \frac{1}{8}$	A1 A1	For correct coefficients
$\Rightarrow GS \ \ y = (A + Bx)e^{4x} + \frac{1}{4}x + \frac{1}{8}$	B1√ 7	For GS = CF + PI. Requires $y = 1$. f.t. from CF and PI with
		2 arbitrary constants in CF and none in PI
	7	
3 (i) line segment OA	B1	For stating line through O OR A
	B1 2	For correct description AEF
(ii) $(\mathbf{r} - \mathbf{a}) \times (\mathbf{r} - \mathbf{b}) = \overrightarrow{AP} \times \overrightarrow{BP}$	B1	For identifying $\mathbf{r} - \mathbf{a}$ with \overrightarrow{AP} and $\mathbf{r} - \mathbf{b}$ with \overrightarrow{BP}
	D1 6	Allow direction errors
$= AP BP \sin \pi \cdot \hat{\mathbf{n}} = 0$	B1 2	For using \times of 2 parallel vectors = 0 $OR \sin \pi = 0$ or $\sin 0 = 0$
		in an appropriate vector expression
(iii) line through O	B1	For stating line
parallel to AB	B1 B1 3	For stating through <i>O</i> For stating correct direction
Francisco Control		
		SR For \overrightarrow{AB} or \overrightarrow{BA} allow B1 B0 B1
	7	
4 $(C+iS=)$ $\int_0^{1/2} e^{2x} (\cos 3x + i \sin 3x) (dx)$		
$\cos 3x + i\sin 3x = e^{3ix}$	B1	For using de Moivre, seen or implied
$\int_0^{\frac{1}{2}\pi} e^{(2+3i)x} (dx) = \frac{1}{2+3i} \left[e^{(2+3i)x} \right]_0^{\frac{1}{2}\pi}$	M1* A1	For writing as a single integral in exp form For correct integration (ignore limits)
$= \frac{2-3i}{4+9} \left(e^{(2+3i)\frac{1}{2}\pi} - e^{0} \right) = \frac{2-3i}{13} \left(-ie^{\pi} - 1 \right)$	A1	For substituting limits correctly (unsimplified)
	M1 (dep*)	(may be earned at any stage) For multiplying by complex conjugate of 2+3i
$= \left\{ \frac{1}{13} \left(-2 - 3e^{\pi} + i (3 - 2e^{\pi}) \right) \right\}$	M1 (dep*)	For equating real and/or imaginary parts
$C = -\frac{1}{13} \left(2 + 3e^{\pi} \right)$	A1	For correct expression AG
$S = \frac{1}{13} \left(3 - 2e^{\pi} \right)$	A1	For correct expression
	8	

	_	-
5 (i) IF $e^{\int \frac{1}{x} dx} = e^{\ln x} = x$ OR $x \frac{dy}{dx} + y = x \sin 2x$	M1	For correct process for finding integrating factor OR for multiplying equation through by x
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\sin 2x$	A1	For writing DE in this form (may be implied)
$\Rightarrow xy = \int x \sin 2x (\mathrm{d}x)$	M1	For integration by parts the correct way round
$xy = -\frac{1}{2}x\cos 2x + \frac{1}{2}\int\cos 2x(\mathrm{d}x)$	A1	For 1st term correct
$xy = -\frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x \ (+c)$	M1	For their 1st term and attempt at integration of $\frac{\cos kx}{\sin kx}$
$\Rightarrow y = -\frac{1}{2}\cos 2x + \frac{1}{4x}\sin 2x + \frac{c}{x}$	A1 6	For correct expression for y
(ii) $\left(\frac{1}{4}\pi, \frac{2}{\pi}\right) \Rightarrow \frac{2}{\pi} = \frac{1}{\pi} + \frac{4c}{\pi} \Rightarrow c = \frac{1}{4}$	M1	For substituting $\left(\frac{1}{4}\pi, \frac{2}{\pi}\right)$ in solution
$\Rightarrow y = -\frac{1}{2}\cos 2x + \frac{1}{4x}\sin 2x + \frac{1}{4x}$	A1 2	For correct solution. Requires $y = 1$.
(iii) $(y \approx) -\frac{1}{2}\cos 2x$	B1√ 1	For correct function AEF f.t. from (ii)
	9	
6 (i)		Either coordinates or vectors may be used Methods 1 and 2 may be combined, for a maximum of 5 marks
METHOD 1	M1	Facusina contantante de alama
State $B = (-1, -7, 2) + t(1, 2, -2)$ On plane $\Rightarrow (-1+t) + 2(-7+2t) - 2(2-2t) = -1$	M1 M1	For using vector normal to plane For substituting parametric form into plane
On plane $\rightarrow (-1+t)+2(-1+2t)-2(2-2t)=-1$	M1	For solving a linear equation in t
$\Rightarrow t = 2 \Rightarrow B = (1, -3, -2)$	A1	For correct coordinates
$AB = \sqrt{2^2 + 4^2 + 4^2} OR 2\sqrt{1^2 + 2^2 + 2^2} = 6$	A1 5	For correct length of AB
METHOD 2		
$AB = \left \frac{-1 - 14 - 4 + 1}{\sqrt{1^2 + 2^2 + 2^2}} \right = 6$		
	M1 A1	For using a correct distance formula For correct length of AB
OR $AB = AC \cdot AB = \frac{[6, 7, 1] \cdot [1, 2, -2]}{\sqrt{1^2 + 2^2 + 2^2}} = 6$	Ai	For correct length of AB
$B = (-1, -7, 2) \pm 6 \frac{(1, 2, -2)}{\sqrt{1^2 + 2^2 + 2^2}}$	M1	For using $B = A + \text{length of } AB \times \text{unit normal}$
$B = (-1, -7, 2) \pm (2, 4, -4)$	B1	For checking whether + or – is needed
B = (1, -3, -2)	A1	(substitute into plane equation) For correct coordinates (allow even if B0)
(ii) Find vector product of any two of $\pm [6, 7, 1], \pm [6, -3, 0], \pm (0, 10, 1)$	M1	For finding vector product of two relevant vectors
Obtain $k[1, 2, -20]$	A1	For correct vector n
$\theta = \cos^{-1} \frac{\left [1, 2, -2] \cdot [1, 2, -20] \right }{\sqrt{1^2 + 2^2 + 2^2} \sqrt{1^2 + 2^2 + 20^2}}$	M1* M1 (dep*)	For using scalar product of two normal vectors For stating both moduli in denominator
$\theta = \cos^{-1} \frac{45}{\sqrt{9\sqrt{405}}} = 41.8^{\circ} (41.810^{\circ}, 0.72972)$	A1√ A1 6 11	For correct scalar product. f.t. from n For correct angle
		1

7 (i) (a) $\sin \frac{6}{8}\pi = \frac{1}{\sqrt{2}}$, $\sin \frac{2}{8}\pi = \frac{1}{\sqrt{2}}$	B1	1	For verifying $\theta = \frac{1}{8}\pi$
(b)	M1		For sketching $y = \sin 6\theta$ and $y = \sin 2\theta$ for 0 ,, θ ,, $\frac{1}{2}\pi$ OR any other correct method for solving $\sin 6\theta = \sin 2\theta$ for $\theta \neq k\frac{\pi}{2}$ OR appropriate use of symmetry
0 3-	A1	2	OR attempt to verify a reasonable guess for θ
$\theta = \frac{3}{8}\pi$ (ii) Im $(c + i s)^6 = 6c^5 s - 20c^3 s^3 + 6cs^5$	M1 A1		For correct θ For expanding $(c+is)^6$; at least 3 terms and 3 binomial coefficients needed For 3 correct terms
$\sin 6\theta = \sin \theta \left(6c^5 - 20c^3 (1 - c^2) + 6c(1 - c^2)^2 \right)$	M1		For using $s^2 = 1 - c^2$
$\sin 6\theta = \sin \theta \left(32c^5 - 32c^3 + 6c \right)$	A1		For any correct intermediate stage
$\sin 6\theta = 2\sin\theta\cos\theta \left(16c^4 - 16c^2 + 3\right)$	A1		For obtaining this expression correctly
$\sin 6\theta = \sin 2\theta \left(16\cos^4\theta - 16\cos^2\theta + 3\right)$		5	AG
(iii) $16c^4 - 16c^2 + 3 = 1$	M1		For stating this equation AEF
$\Rightarrow c^2 = \frac{2 \pm \sqrt{2}}{4}$	A1		For obtaining both values of c^2
- sign requires larger $\theta = \frac{3}{8}\pi$	A1	3 1	For stating and justifying $\theta = \frac{3}{8}\pi$ Calculator OK if figures seen

	i	
8 (i) Group <i>A</i> : $e = 6$ Group <i>B</i> : $e = 1$) D1	The same of the state of the st
Group C : $e = 2^0$ OR 1	$\begin{bmatrix} B1 \\ D1 \end{bmatrix}$	For any two correct identities For two other correct identities
Group C : $e = 2$ OK 1 Group D : $e = 1$	B1 2	AEF for D , but not " $m = n$ "
(ii) EITHER OR) 2	1111 1012,011 1101 111 11
A 2 4 6 8		
2 4 8 2 6 orders of elements		
4 8 6 4 2 1, 2, 4, 4		
6 2 4 6 8 OR cyclic group		
8 6 2 8 4		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{bmatrix} 1 & 1 & 5 & 7 & 11 \\ & 1 & 2 & 2 & 2 \end{bmatrix}$		
7 7 11 1 5 OR non-cyclic group		
11 11 7 5 1 OR Klein group		
$C \mid 2^0 2^1 2^2 2^3$		Final colonia como della
		For showing group table <i>OR</i> sufficient details of orders of elements
2^{0} 2^{0} 2^{1} 2^{2} 2^{3} orders of elements 2^{1} 2^{1} 2^{2} 2^{3} 2^{0} 1, 2, 4, 4		OR stating cyclic / non-cyclic / Klein group
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(as appropriate)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1*	for one of groups A, B, C
$\begin{vmatrix} 2^3 & 2^3 & 2^0 & 2^1 & 2^2 \end{vmatrix}$	B1*	for another of groups A, B, C
$A \ncong B$	B1	For stating non-isomorphic
	(dep*)	with sufficient detail
$B \ncong C$	B1 (dep*)	For stating non-isomorphic
$A \cong C$	B1	For stating isomorphic relating to the first 2 marks
n=c	(dep*)	Tor stating isomorphic
	5	Francisco de la CORCA de la CORCA
(iii) $\frac{1+2m}{1+2n} \times \frac{1+2p}{1+2q} = \frac{1+2m+2p+4mp}{1+2n+2q+4nq}$	M1*	For considering product of 2 distinct elements of this form
1+2n $1+2q$ $1+2n+2q+4nq$	M1	For multiplying out
	(dep*)	
$= \frac{1+2(m+p+2mp)}{1+2(n+q+2nq)} = \frac{1+2r}{1+2s}$	A1	For simplifying to form shown
1+2(n+q+2nq) $1+2s$	A1 4	For identifying as correct form, so closed
		$\mathbf{SR} \frac{\text{odd}}{\text{odd}} \times \frac{\text{odd}}{\text{odd}} = \frac{\text{odd}}{\text{odd}} \text{earns full credit}$
		SR If clearly attempting to prove commutativity, allow
(in) Classical St. I	D1	at most M1
(iv) Closure not satisfied	B1	For stating closure
Identity and inverse not satisfied	B1 2	For stating identity and inverse
		SR If associativity is stated as not satisfied, then award at most B1 B0 <i>OR</i> B0 B1
	13	