4727 Further Pure Mathematics 3

1 (a) (i) e.g. $a p \neq p a \Rightarrow$ not commutative	B1 1	For correct reason and conclusion
(ii) 3	B1 1	For correct number
(iii) e, a, b	B1 1	For correct elements
(b) c^{3} has order 2 c^{4} has order 3 c^{5} has order 6	$$	For correct order For correct order For correct order
2 $\begin{aligned} & m^{2}-8 m+16=0 \\ & \Rightarrow m=4 \\ & \Rightarrow \text { CF }(y=)(A+B x) \mathrm{e}^{4 x} \end{aligned}$ For PI try $y=p x+q$ $\begin{aligned} & \Rightarrow-8 p+16(p x+q)=4 x \\ & \Rightarrow p=\frac{1}{4} \quad q=\frac{1}{8} \\ & \Rightarrow \text { GS } y=(A+B x) \mathrm{e}^{4 x}+\frac{1}{4} x+\frac{1}{8} \end{aligned}$	M1 A1 A1 $\sqrt{ }$ M1 A1 A1 B1 $\sqrt{ } 7$	For stating and attempting to solve auxiliary eqn For correct solution For CF of correct form. f.t. from m For using linear expression for PI For correct coefficients For GS $=\mathrm{CF}+$ PI. Requires $y=$. f.t. from CF and PI with 2 arbitrary constants in CF and none in PI
3 (i) line segment $O A$	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	For stating line through O OR A For correct description AEF
$\text { (ii) } \begin{aligned} (\mathbf{r}-\mathbf{a}) & \times(\mathbf{r}-\mathbf{b})=\overrightarrow{A P} \times \overrightarrow{B P} \\ & =\|A P\|\|B P\| \sin \pi \cdot \hat{\mathbf{n}}=\mathbf{0} \end{aligned}$	B1 $\text { B1 } \quad 2$	For identifying $\mathbf{r}-\mathbf{a}$ with $\overrightarrow{A P}$ and $\mathbf{r}-\mathbf{b}$ with $\overrightarrow{B P}$ Allow direction errors For using \times of 2 parallel vectors $=\mathbf{0}$ OR $\sin \pi=0$ or $\sin 0=0$ in an appropriate vector expression
(iii) line through O parallel to $A B$	B1 B1 B1 3 7	For stating line For stating through O For stating correct direction SR For $\overrightarrow{A B}$ or $\overrightarrow{B A}$ allow B1 B0 B1
4 $\begin{aligned} & (C+\mathrm{i} S=) \int_{0}^{\frac{1}{2} \pi} \mathrm{e}^{2 x}(\cos 3 x+\mathrm{i} \sin 3 x)(\mathrm{d} x) \\ & \cos 3 x+\mathrm{i} \sin 3 x=\mathrm{e}^{3 \mathrm{i} x} \\ & \int_{0}^{\frac{1}{2} \pi} \mathrm{e}^{(2+3 \mathrm{i}) x}(\mathrm{~d} x)=\frac{1}{2+3 \mathrm{i}}\left[\mathrm{e}^{(2+3 \mathrm{i}) x}\right]_{0}^{\frac{1}{2} \pi} \\ & =\frac{2-3 \mathrm{i}}{4+9}\left(\mathrm{e}^{(2+3 \mathrm{i}) \frac{1}{2} \pi}-\mathrm{e}^{0}\right)=\frac{2-3 \mathrm{i}}{13}\left(-\mathrm{i} \mathrm{e}^{\pi}-1\right) \\ & =\left\{\frac{1}{13}\left(-2-3 \mathrm{e}^{\pi}+\mathrm{i}\left(3-2 \mathrm{e}^{\pi}\right)\right\}\right. \\ & C=-\frac{1}{13}\left(2+3 \mathrm{e}^{\pi}\right) \\ & S=\frac{1}{13}\left(3-2 \mathrm{e}^{\pi}\right) \end{aligned}$	B1 M1* A1 A1 M1 (dep*) M1 (dep*) A1 A1 8	For using de Moivre, seen or implied For writing as a single integral in exp form For correct integration (ignore limits) For substituting limits correctly (unsimplified) (may be earned at any stage) For multiplying by complex conjugate of $2+3 i$ For equating real and/or imaginary parts For correct expression AG For correct expression

5	M1 A1 M1 A1 M1 A1	For correct process for finding integrating factor $O R$ for multiplying equation through by x For writing DE in this form (may be implied) For integration by parts the correct way round For 1st term correct For their 1st term and attempt at integration of ${ }_{\sin }^{\cos } k x$ For correct expression for y
$\begin{aligned} & \text { (ii) }\left(\frac{1}{4} \pi, \frac{2}{\pi}\right) \Rightarrow \frac{2}{\pi}=\frac{1}{\pi}+\frac{4 c}{\pi} \Rightarrow c=\frac{1}{4} \\ & \Rightarrow y=-\frac{1}{2} \cos 2 x+\frac{1}{4 x} \sin 2 x+\frac{1}{4 x} \end{aligned}$	M1 A1 2	For substituting $\left(\frac{1}{4} \pi, \frac{2}{\pi}\right)$ in solution For correct solution. Requires $y=$.
(iii) $(y \approx)-\frac{1}{2} \cos 2 x$	B1 $\sqrt{ } 1$ 9	For correct function AEF f.t. from (ii)
6 (i) METHOD 1 State $B=(-1,-7,2)+t(1,2,-2)$ On plane $\Rightarrow(-1+t)+2(-7+2 t)-2(2-2 t)=-1$ $\begin{aligned} & \Rightarrow t=2 \Rightarrow B=(1,-3,-2) \\ & A B=\sqrt{2^{2}+4^{2}+4^{2}} \text { OR } 2 \sqrt{1^{2}+2^{2}+2^{2}}=6 \end{aligned}$	M1 M1 M1 A1 A1 5	Either coordinates or vectors may be used Methods 1 and 2 may be combined, for a maximum of 5 marks For using vector normal to plane For substituting parametric form into plane For solving a linear equation in t For correct coordinates For correct length of $A B$
METHOD 2 $\begin{aligned} & A B=\left\|\frac{-1-14-4+1}{\sqrt{1^{2}+2^{2}+2^{2}}}\right\|=6 \\ & \text { OR } A B=\mathbf{A C} \cdot \mathbf{A B}=\frac{[6,7,1] \cdot[1,2,-2]}{\sqrt{1^{2}+2^{2}+2^{2}}}=6 \\ & B=(-1,-7,2) \pm 6 \frac{(1,2,-2)}{\sqrt{1^{2}+2^{2}+2^{2}}} \\ & B=(-1,-7,2) \pm(2,4,-4) \\ & B=(1,-3,-2) \end{aligned}$	M1 A1 M1 B1 A1	For using a correct distance formula For correct length of $A B$ For using $B=A+$ length of $A B \times$ unit normal For checking whether + or - is needed (substitute into plane equation) For correct coordinates (allow even if B0)
(ii) Find vector product of any two of $\pm[6,7,1], \pm[6,-3,0], \pm(0,10,1)$ Obtain $k[1,2,-20]$ $\begin{gathered} \theta=\cos ^{-1} \frac{\|[1,2,-2] \cdot[1,2,-20]\|}{\sqrt{1^{2}+2^{2}+2^{2}} \sqrt{1^{2}+2^{2}+20^{2}}} \\ \theta=\cos ^{-1} \frac{45}{\sqrt{9} \sqrt{405}}=41.8^{\circ}\left(41.810 \ldots^{\circ}, 0.72972 \ldots\right) \end{gathered}$	$$	For finding vector product of two relevant vectors For correct vector \mathbf{n} For using scalar product of two normal vectors For stating both moduli in denominator For correct scalar product. f.t. from \mathbf{n} For correct angle

7 (i) (a) $\sin \frac{6}{8} \pi=\frac{1}{\sqrt{2}}, \quad \sin \frac{2}{8} \pi=\frac{1}{\sqrt{2}}$	B1 1	For verifying $\theta=\frac{1}{8} \pi$
(b) $\theta=\frac{3}{8} \pi$	M1 A1 2	For sketching $y=\sin 6 \theta$ and $y=\sin 2 \theta$ for 0 , θ, $\frac{1}{2} \pi$ $O R$ any other correct method for solving $\sin 6 \theta=\sin 2 \theta$ for $\theta \neq k \frac{\pi}{2}$ $O R$ appropriate use of symmetry $O R$ attempt to verify a reasonable guess for θ For correct θ
(ii) $\operatorname{Im}(c+\mathrm{i} s)^{6}=6 c^{5} s-20 c^{3} s^{3}+6 c s^{5}$ $\begin{gathered} \sin 6 \theta=\sin \theta\left(6 c^{5}-20 c^{3}\left(1-c^{2}\right)+6 c\left(1-c^{2}\right)^{2}\right) \\ \sin 6 \theta=\sin \theta\left(32 c^{5}-32 c^{3}+6 c\right) \\ \sin 6 \theta=2 \sin \theta \cos \theta\left(16 c^{4}-16 c^{2}+3\right) \\ \sin 6 \theta=\sin 2 \theta\left(16 \cos ^{4} \theta-16 \cos ^{2} \theta+3\right) \end{gathered}$	M1 A1 M1 A1 A1 5	For expanding $(c+\mathrm{i} s)^{6}$; at least 3 terms and 3 binomial coefficients needed For 3 correct terms For using $s^{2}=1-c^{2}$ For any correct intermediate stage For obtaining this expression correctly AG
(iii) $16 c^{4}-16 c^{2}+3=1$ $\Rightarrow c^{2}=\frac{2 \pm \sqrt{2}}{4}$ - sign requires larger $\theta=\frac{3}{8} \pi$	M1 A1 A1 3 11	For stating this equation AEF For obtaining both values of c^{2} For stating and justifying $\theta=\frac{3}{8} \pi$ Calculator OK if figures seen

8 (i) Group A: $e=6$ Group B: $e=1$ Group C: $e=2^{0}$ OR 1 Group D: $\quad e=1$	\% B1	For any two correct identities For two other correct identities AEF for D, but not " $m=n$ "
(ii) OR orders of elements 1, 2, 4, 4 OR cyclic group orders of elements 1, 2, 4, 4 OR cyclic group $A \not \approx B$ $B \nexists C$ $A \cong C$	B1* B1* B1 (dep*) B1 (dep*) B1 (dep*)	For showing group table OR sufficient details of orders of elements OR stating cyclic / non-cyclic / Klein group (as appropriate) for one of groups A, B, C for another of groups A, B, C For stating non-isomorphic with sufficient detail For stating non-isomorphic relating to the first 2 marks
$\text { (iii) } \begin{aligned} & \frac{1+2 m}{1+2 n} \times \frac{1+2 p}{1+2 q}=\frac{1+2 m+2 p+4 m p}{1+2 n+2 q+4 n q} \\ = & \frac{1+2(m+p+2 m p)}{1+2(n+q+2 n q)} \equiv \frac{1+2 r}{1+2 s} \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { M1 } \\ & \text { (dep*) } \\ & \text { A1 } \\ & \text { A1 } 4 \end{aligned}$	For considering product of 2 distinct elements of this form For multiplying out For simplifying to form shown For identifying as correct form, so closed SR $\frac{\text { odd }}{\text { odd }} \times \frac{\text { odd }}{\text { odd }}=\frac{\text { odd }}{\text { odd }}$ earns full credit SR If clearly attempting to prove commutativity, allow at most M1
(iv) Closure not satisfied Identity and inverse not satisfied	B1 B1 2 13	For stating closure For stating identity and inverse SR If associativity is stated as not satisfied, then award at most B1 B0 OR B0 B1

